Professor Marina MANEA

Geosciences Center, National Autonomous University of Mexico (UNAM).

Responsible – Computational Geodynamics Laboratory, UNAM – LCG

Co-responsible – National Laboratory for Advanced Scientific Visualization, UNAM -LAVIS

email: marina@geociencias.unam.mx


Education


  • 2019- PhD advisor in Geography (Romanian, English, Spanish)
  • 2004-2006-Postdoctoral Scholar, Seismological Laboratory, CALTECH, Pasadena, USA
  • 2004, PhD in Geophysics, Institute of Geophysics, UNAM
  • 1999, MSc in GIS, Technical University of Civil Engineering of Bucharest.
  • 1997, BSc in Geophysics, Faculty of Geology and Geophysics, University of Bucharest.

Teaching


  • Geodynamics

Research Interests


1. Tectonosphere and forms of movement of matter within it; geographical consequences. 1.1. Geodynamics of subduction zones. Geomorphological processes associated with subduction. 1.2. Convection in terrestrial mantle and geomorphological consequences 1.3. Numerical modeling of saline diapirism 2. Planetary Sciences 2.1. Numerical modeling of the asteroid impact on the relief. 2.2. Temperature distribuction in planets and possible geographical consequences  Invited Researcher

  • Sep-Oct 2018 – Invited researcher, Research Center for Urban Safety and Security, University of Kobe, Japan.
  • Ian-Sep 2017 – Sabbatical year, National Institute for Research-Development in Earth Physics, Magurele, Romania.
  • Apr-Iun 2016 – Invited researcher, Research Center for Urban Safety and Security, University of Kobe, Japan.
  • Aug-Sep 2015 – Invited researcher, Research Center for Urban Safety and Security, University of Kobe, Japan.


Publications:


  • 36/ Diego Melgar, Angel Ruiz-Angulo, Emmanuel Soliman Garcia, Marina Manea, Vlad. C. Manea, Xiaohua Xu, M. Teresa Ramirez-Herrera, Jorge Zavala-Hidalgo, Jianghui Geng, Nestor Corona, Xyoli Pérez-Campos, Enrique Cabral-Cano, Leonardo Ramirez-Guzmán, 2018. Deep embrittlement and complete rupture of the lithosphere during the M w 8.2 Tehuantepec earthquake, Nature Geosciences, 11, 955-960. (FI=13.941)
  • 35/ Ji, Y., Yoshioka, S., Manea, V.C., Manea, M., Suenaga, N., 2018. Subduction thermal structure, metamorphism and seismicity beneath north-central Chile, Journal of Geodynamics. (FI=2.142)
  • 34/ Manea, M., Manea, V.C., Ferrari, L., Orozco-Esquivel, T., 2018. Delamination of sub-crustal lithosphere beneath the Isthmus of Tehuantepec, Mexico: Insights from numeric modelling , Journal of Geodynamics. (FI=2.142)
  • 33/ Ji, Y., Yoshioka, S., Manea, V.C. Manea, M., Matsumoto, T., 2017. Seismogenesis of dual subduction beneath Kanto, central Japan controlled by fluid release. Scientific Reports, vol. 7, no: 16864, doi:10.1038/s41598-017-16818-z. (FI=4.259)
  • 32/ Manea, V.C., Manea, M., Ferrari, L., Orozco, T., Valenzuela. R.W., Husker, A., Kostoglodov, V., 2017. Invited Review Article: A review of the geodynamic evolution of flat slab subduction in Mexico, Peru, and Chile. Tectonophysics, vol 695, pp. 27-52, doi:10.1016/j.tecto.2016.11.037 (FI=2.693)
  • 31/ Ji, Y., Yoshioka, S., Manea, V.C., Manea, M., and Matsumoto, T., 2017. Three-dimensional numerical modeling of thermal regime and slab dehydration beneath Kanto and Tohoku, Japan, J. Geophys. Res. Solid Earth, 122, 332–353, doi:10.1002/2016JB013230. (FI=3.35)
  • 30/ Manea, M., Yoshioka, S. and Manea, V.C., 2017. Subduction of oceanic plate irregularities in South-Central Mexico and the influence on subduction seismicity. Research Center for Urban Safety and Security Kobe University, RCUSS Report no. 21, pp. 184-194.
  • (http://www.rcuss.kobe-u.ac.jp/publication/Year2017/pdfEach21/21_18.pdf)
  • 29/ Manea, V.C., Yoshioka, S. and Manea, M., 2016. Subduction dynamics and mantle tomography beneath Japan. Research Center for Urban Safety and Security Kobe University, RCUSS Report no. 20, pp. 120-131.
  • (http://www.rcuss.kobe-u.ac.jp/publication/Year2016/pdfEach20/20_14.pdf)
  • 28/ Manea, V.C., Leeman, W., Gerya, T., Manea, M., Zhu, G., 2014. Subduction of fracture zones controls mantle melting and geochemical signature above slabs. Nature Communications, 5:5095, http://10.1038/ncomms6095. (FI=12.124)
  • 27/ Manea, V.C., Manea, M., Ferrari, L., 2013. Review Article: A Geodynamical Perspective on the Subduction of Cocos and Rivera plates beneath Mexico and Central America. Tectonophysics, http://dx.doi.org/10.1016/j.tecto.2012.12.039 (FI=2.433)
  • 26/ Ferrari, L., Orozco-Esquivel, T., Manea, V.C., and Manea, M., 2012. Review Article: The dynamic history of the Trans-Mexican Volca1nic Belt and the Mexico subduction zone, Tectonophysics, 522-523, p. 122-149 (FI=2.433)
  • 25/ Manea, V.C., Manea, M., Pomeran, M., Besutiu, L., Zlagnean, L., 2012. Computational Fluid Dynamics in Solid Earth Sciences–a HPC challenge. Acta Universitaria, 22(7), 32-36.
  • 24/ Manea, V.C., Manea, M., Pomeran, M., Besutiu, L., Zlagnean, L., 2012. A parallelized particle tracing code for CFD simulations in Earth sciences. Acta Universitaria, 22(5), 12-18.
  • 23/ Franco, A., Lasserre, C., Lyon-Caen, H., Kostoglodov, V., Molina, E., Guzman-Speziale, M., Monterosso, D., Robles, V., Figueroa, C., Amaya, W., Barrier, E., Chiquin, L., Moran, S., Flores, O., Romero, J., Santiago, J.A., Manea, M., and Manea, V.C., 2012. Fault kinematics in northern Central America and coupling along the subduction interface of the Cocos Plate, from GPS data in Chiapas (Mexico), Guatemala and El Salvador. Geophysical Journal International, 189, 1223-1236. (FI=2.528)
  • 22/ Manea, V.C., Perez-Gussinye, M., and Manea, M., 2012. Chilean flat slab subduction controlled by overriding plate thickness and trench rollback, Geology, v.40, no.1, pp. 35-38; doi: 10.1130/G32543.1 (FI=4.635)
  • 21/ Capra, L., Manea, V.C., Manea, M., and Norini, G., 2011. The importance of Digital Elevation Model resolution on granular flow simulations: a test case for Colima volcano using TITAN2D computational routine, Natural Hazards, vol. 59, issue 2, pp: 655-680, doi: 10.1007/s11069-01109788-6 (FI=1.901)
  • 20/ Manea, V.C. and Manea, M., 2011. Flat-slab thermal structure and evolution beneath Central Mexico, Pure and Applied Geophysics, doi: 10.1007/s00024-010-0207-9, 13pp. (FI=1.652)
  • 19/ Manea, M. and Manea, V.C., 2011. Curie point depth estimates and correlation with subduction in Mexico, Pure and Applied Geophysics, doi: 10.1007/s00024-010-0238-2 (FI=1.652)
  • 18/ Munoz-Salinas, E., Castillo-Rodriguez, M., Manea, V.C., Manea, M., Palacios, D., 2010. On the geochronological method versus flow simulation software application for lahar risk mapping: a case study of Popocatepetl volcano, Mexico., Geografiska Annaler Series A, 92(3), 311-328. (FI=1.616)
  • 17/ Manea, V.C. and Manea, M., 2010. Advanced Computing infrastructure for Research in Geodynamics, ISUM Conference Proceedings, Transforming Research through High Performance Computing, Torres Martinez, M., ed. Vol. 1, ISBN: 978-607-450-348-7
  • 16/ Manea, M. and Manea, V.C., 2010. 3d Visualization for Research and Teaching in Geosciences, ISUM Conference Proceedings, Transforming Research through High Performance Computing, Torres Martinez, M. ed., Vol. 1, ISBN: 978-607-450-348-7
  • 15/ Manea, V.C. and Manea, M., 2009. Thermally induced stresses beneath the Vrancea area, Integrated research on the intermediate depth earthquake genesis within Vrancea zone, In Besutiu, L. (Ed.), Vergiliu Publishing Housem pp.172-183. ISBN 978-973-7600-59-2
  • 14/ Manea, V.C., Manea, M., Leeman, W.P., and Schutt, D.L., 2009. The influence of plume head-lithosphere interaction on magmatism associated with the Yellowstone hotspot track. Journal of Volcanology and Geothermal Research, doi: 10.1016/j.jvolgeores.2008.12.012 (FI=2.368)
  • 13/ Munoz-Salinas, E., Castillo-Rodriguez, M., Manea, V.C., Manea, M., Palacios, D., 2008. Lahar flow simulations using LAHARZ program: application for the Popocatepetl Volcano, Mexico., Journal of Volcanology and Geothermal Research, vol. 175, pp. 459-471, doi:10.2016/j.volgeores.2009.01.030. (FI=2.368)
  • 12/ Manea, M., and Manea, V.C., 2008. On the origin of El Chichón volcano and subduction of Tehuantepec Ridge: A geodynamical perspective., Journal of Volcanology and Geothermal Research, vol. 175, pp. 459-471, doi:10.1016/j.volgeores.2008.02.028 (FI=2.368)
  • 11/ Manea, V.C., and Manea, M., 2007. Thermal models beneath Kamchatka and the Pacific plate rejuvenation from a mantle plume impact., AGU Monograph: Volcanism and Subduction: The Kamchatka Region, eds.: Eichelberger, J., Gordeev, E., Izbekov, P., Ruppert, N., Kasahara, M., and Lees, J., Geophysical Monograph Series 172, pp. 81-94.
  • 10/ Manea, V.C., Manea, M., Kostoglodov, V., and Sewell, G., 2006. Intraslab seismicity and thermal stress in the subducted Cocos Plate beneath Central Mexico, Tectonophysics, vol. 420, no. 3-4, pp. 389-408 (FI=2.433)
  • 9/ Manea, V.C., and Manea, M., 2006. The origin of modern Chiapanecan volcanic arc in southern Mexico inferredfrom thermal models, Volcanic hazards in Central America, GSA, Rose, W.I., Bluth, G.J.S., Carr, M.J., Ewert,J.W., Patino, LC., and Vallance, J.W. vol. GSA Special Paper 412, no. ch2, pp. 27-38
  • 8/ Franco Sánchez, S.I., Kostoglodov, V., Larson, K.M., Manea, V.C., Manea, M. and Santiago, J.A., 2005. Propagation of the 2001-2002 silent earthquake and interplate coupling in the Oaxaca subduction zone, Mexico., Earth Planets Space, vol. 57, pp. 973-985 (FI=2.773)
  • 7/ Manea, M., Manea, V.C., Ferrari, L., Kostoglodov, V. and, Bandy, W., 2005. Tectonic evolution of the Tehuantepec Ridge., Earth and Planetary Science Letters, vol. 238, pp. 64-77 (FI=4.581)
  • 6/ Manea, M., Manea, V.C., Kostoglodov, V., and Guzmán-Speziale, M., 2005. Elastic Thickness of the Lithosphere below the Tehuantepec Ridge., Geofisica Internacional, vol. 44, no 2, pp. 157-168 (FI=0.41)
  • 5/ Manea, V.C., Manea, M., Kostoglodov, V., and Sewell, G., 2005. Thermal models, magma transport, and velocity estimation beneath southern Kamchatka., Plates, Plumes and Paradigms, GSA, Foulger, G.R., Natland, J.H., Presnell, D.C., and Anderson, D.L (eds.), GSA Special paper, 388-31, pp. 517-536
  • 4/ Manea, V.C., Manea, M., Kostoglodov, V., and Sewell, G., 2005. Thermo-mechanical model of the mantle wedge in Central Mexican subduction zone and a blob tracing approach for the magma transport, Physics of the Earth and Planetary Interiors, vol. 149, pp. 165-186, doi:10.1016/JPEPI2004.08.024 (FI=2.156)
  • 3/ Manea, V.C., Manea, M., Kostoglodov, V., Currie, C.A., and Sewell, G., 2004. Thermal Structure, Coupling, and Metamorphim in the Mexican Subduction Zone beneath Guerrero, Geophysical Journal International, vol. 158, pp. 775-784 (FI=2.528)
  • 2/ Manea, M., Manea, V.C., and Kostoglodov, V., 2003. Sediment fill of the Middle America Trench inferred from the gravity anomalies, Geofisica Internacional, vol. 42, no. 4, pp. 603-612 (FI=0.41)
  • 1/ Kostoglodov, V., Bilham, R., Santiago, J.A., Manea, V.C., Manea, M., and Hernandez, V., 2002. Long-baseline fluid tiltmeter for seismotectonics studies of Mexican subduction zone, Geofisica Internacional, vol. 41, no. 1, pp. 11-2 (FI=0.41)